Separation theorems for nonconvex sets in spaces with non-symmetric seminorm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Point Theorems for Nonexpansive Mappings on Nonconvex Sets in Uced Banach Spaces

It is shown that every asymptotically regular or λ-firmly nonexpansive mapping T : C → C has a fixed point whenever C is a finite union of nonempty weakly compact convex subsets of a Banach spaceX which is uniformly convex in every direction. Furthermore, if {Ti}i∈I is any compatible family of strongly nonexpansive self-mappings on such a C and the graphs of Ti, i∈ I, have a nonempty intersecti...

متن کامل

A nonconvex separation property in Banach spaces

We establish, in innnite dimensional Banach space, a nonconvex separation property for general closed sets that is an extension of Hahn-Banach separation theorem. We provide some consequences in optimization, in particular the existence of singular multipliers and show the relation of our principle with the extremal principle of Mordukhovich.

متن کامل

Weak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces

‎In this paper‎, ‎we prove some theorems related to properties of‎ ‎generalized symmetric hybrid mappings in Banach spaces‎. ‎Using Banach‎ ‎limits‎, ‎we prove a fixed point theorem for symmetric generalized‎ ‎hybrid mappings in Banach spaces‎. ‎Moreover‎, ‎we prove some weak‎ ‎convergence theorems for such mappings by using Ishikawa iteration‎ ‎method in a uniformly convex Banach space.

متن کامل

Branching Theorems for Compact Symmetric Spaces

A compact symmetric space, for purposes of this article, is a quotient G/K, where G is a compact connected Lie group and K is the identity component of the subgroup of fixed points of an involution. A branching theorem describes how an irreducible representation decomposes upon restriction to a subgroup. The article deals with branching theorems for the passage from G to K2 ×K1, where G/(K2 ×K1...

متن کامل

Branching Theorems for Compact Symmetric Spaces 405 [

A compact symmetric space, for purposes of this article, is a quotient G=K, where G is a compact connected Lie group and K is the identity component of the subgroup of xed points of an involution. A branching theorem describes how an irreducible representation decomposes upon restriction to a subgroup. The article deals with branching theorems for the passage from G to K 2 K 1 , where G=(K 2 K ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2017

ISSN: 1331-4343

DOI: 10.7153/mia-20-47